param_tuner = ParamTuner(param_fn=objective_function_semantic_similarity,param_dict=param_dict,fixed_param_dict=fixed_param_dict,show_progress=True,)results = param_tuner.tune()
import osfrom llama_index.postprocessor.cohere_rerank import CohereRerankapi_key = os.environ["COHERE_API_KEY"]cohere_rerank = CohereRerank(api_key=api_key, top_n=2) # return top 2 nodes from rerankerquery_engine = index.as_query_engine(similarity_top_k=10, # we can set a high top_k here to ensure maximum relevant retrievalnode_postprocessors=[cohere_rerank], # pass the reranker to node_postprocessors)response = query_engine.query("What did Sam Altman do in this essay?",)
finetune_engine = SentenceTransformersFinetuneEngine(train_dataset,model_id="BAAI/bge-small-en",model_output_path="test_model",val_dataset=val_dataset,)finetune_engine.finetune()embed_model = finetune_engine.get_finetuned_model()
from llama_index.core.query_engine import RetrieverQueryEnginefrom llama_index.core.response_synthesizers import CompactAndRefinefrom llama_index.postprocessor.longllmlingua import LongLLMLinguaPostprocessorfrom llama_index.core import QueryBundlenode_postprocessor = LongLLMLinguaPostprocessor(instruction_str="Given the context, please answer the final question",target_token=300,rank_method="longllmlingua",additional_compress_kwargs={"condition_compare": True,"condition_in_question": "after","context_budget": "+100","reorder_context": "sort",? # enable document reorder},)retrieved_nodes = retriever.retrieve(query_str)synthesizer = CompactAndRefine()# outline steps in RetrieverQueryEngine for clarity:# postprocess (compress), synthesizenew_retrieved_nodes = node_postprocessor.postprocess_nodes(retrieved_nodes, query_bundle=QueryBundle(query_str=query_str))print("\n\n".join([n.get_content() for n in new_retrieved_nodes]))response = synthesizer.synthesize(query_str, new_retrieved_nodes)
from llama_index.core.postprocessor import LongContextReorderreorder = LongContextReorder()reorder_engine = index.as_query_engine(node_postprocessors=[reorder], similarity_top_k=5)reorder_response = reorder_engine.query("Did the author meet Sam Altman?")
from llama_index.core import VectorStoreIndex, SimpleDirectoryReaderfrom llama_index.core.output_parsers import LangchainOutputParserfrom llama_index.llms.openai import OpenAIfrom langchain.output_parsers import StructuredOutputParser, ResponseSchema# load documents, build indexdocuments = SimpleDirectoryReader("../paul_graham_essay/data").load_data()index = VectorStoreIndex.from_documents(documents)# define output schemaresponse_schemas = [ResponseSchema(name="Education",description="Describes the author's educational experience/background.",),ResponseSchema( ? ? ? ?name="Work",description="Describes the author's work experience/background.",),]# define output parserlc_output_parser = StructuredOutputParser.from_response_schemas(response_schemas)output_parser = LangchainOutputParser(lc_output_parser)# Attach output parser to LLMllm = OpenAI(output_parser=output_parser)# obtain a structured responsequery_engine = index.as_query_engine(llm=llm)response = query_engine.query("What are a few things the author did growing up?",)print(str(response))
服务器:核心网络安全设备,不可或缺!
细数RAG的12个痛点,英伟达高级架构师亲授解决方案-人工智能
开启3389端口,保障高效远程管理与安全
LLM真的不能用于时序预测,甚至不能用于推理能力-人工智能
远程桌面软件:掌控千里之外,高效无忧!
科大讯飞:预计上半年净亏损 3.8 亿元至 4.6 1亿元,大模型新投资超过1亿元 6.5 IT行业亿元
微软远程桌面,安卓掌控,高效无忧!
LLM真的不能用于时序预测,甚至不能用于推理能力-人工智能
科大讯飞:预计上半年净亏损 3.8 亿元至 4.6 1亿元,大模型新投资超过1亿元 6.5 IT行业亿元
如何修理电源适配器故障-常见问题
什么是电源适配器-常见问题?
如何区分电源适配器的正负极?常见问题
如何拆卸电源适配器-常见问题
电磁感应原理-常见问题
电磁感应是磁生电吗?常见问题
电磁感应现象原理-常见问题
光衰减器的作用-常见问题
光衰减器原理-常见问题-常见问题
光衰减器是一种常见问题